
Reacting to Unexpected Events and Communicating in
spite of Mixed Ontologies

Adolfo Guzman, Carmen Dominguez and Jesus Olivares

Centro de Investigación en Computación, Instituto Politécnico Nacional, Av. J. Bátiz esq.
Miguel Othón, C. P. 07738, Mexico City.

aguzman@cic.ipn.mx, http://www.cic.ipn.mx

Abstract. We describe our experiences in building agents (and their environ-
ment) that could solve important problems in agent to agent communication, in
manners that are not pre-programmed or reactive: (1) Two agents may have
different ontologies. We do not assume that agents share the same classification
of concepts: they have each one its own ontology or concept categorization.
Agents can not exchange concepts: they have to exchange symbols (words of
natural language), which the receiving agent has to map to the intended con-
cept, for interaction to be meaningful. (2) The model for interaction. Our agents
interact through scripts or frames having roles, resources and prerequisites.
Agents select which roles in what scripts to play, in order to satisfy their pur-
poses. (3) Unexpected events happen and throw the agents out of their current
plan or execution. (4) Planning is needed in this changing world.

Key words: Ontology, unexpected events, concept tree, script, multiple
threads.

1 Introduction

The project seeks to produce a theory, model and environment populated with agents
that follow useful behavior (such as “go and sell these apricots”) derived from pur-
poses that take into account resources. These agents interact with agents written else-
where, thus differing in their intentions, models, vocabulary, and messages.

Agents engage in “ orchestrated interactions” or scripts. An agent must obey not
only its own rules (behaviors, algorithms): it must also adopt the rules imposed to it
by the scripts on which it takes part. For instance, if it goes into a restaurant in the
role customer (to eat something), it must obey (most of) the rules that the script
at_a_restaurant impose on the customer. In this way, an agent acquires
additional obligations (additional threads to execute) on top of those initially owned.

Different ontologies do exist. Most agents are not built by us, but by somebody
else. Thus, our agents will i nteract mostly with “unknown and never seen before”

agents from all over the planet. These will express their wishes or purposes uttering
different messages coming from their different knowledge structures. Hence, mecha-
nisms to exchange knowledge among heterogeneous systems are needed.

The need for multiple threads. For versatilit y, an agent may have several behav-
iors: algorithms or threads that pursue some purpose (how_to_be_rich,
how_to_cross_the_street, how_to_bargain...) and may be simulta-
neously executing several of them, and thus pursue several purposes concurrently.

Unanticipated events will happen. An agent was selling_a_car, when the
buyer ran away. What to do? An agent can not have a specific program to handle
every possible exception (the “frame problem” of John McCarthy); it must have more
general rules. Unexpected events are words in the second tape of an Interaction Ma-
chine [16].

2 Related Works

Languages for agent execution. KQML [2], a declarative language, is a message
format and a message handling protocol to enable agents to interoperate and share
knowledge in run time without any concern about the contents of the messages. TCL
[5] is a high-level scripting language that enables a user to define mobile agents.
Tele-Script is also an important recent development in the area. Java is multi -
threaded. Creating LIA (Language for Interacting Agents) facilit ates easier coding
and study of desired features. It differs from KQML in the sense that KQML is not
concerned with the content of the message and therefore makes no changes nor
equivalence among ontologies. LIA differs from TCL in that LIA agents communi-
cate even if they have different ontologies. TCL and KQML are not concurrent.

Interaction Machines. They are defined [16] as extensions to the Turing Machine
model to enable it to deal with models that are incompletely specified and that can be
completed interactively; they are concerned with the incompleteness of Godel’s theo-
rem. An Interaction Machine is a Turing Machine extended with an additional tape
that contains an infinite number of (infinite types of) strings written with letters of an
(infinite) alphabet. Interaction Machines enable us to model open systems: those
exposed to external events, such as unplanned events. Our work on these events is
inspired by this model, which postulates an infinite number of types of external
events, with an infinite alphabet. It is thus impossible to write a program to handle
even each type of event (there is an infinite number of them). To overcome this diff i-
culty, we organize the (infinite) collection of “unanticipated” strings into a tree of
unforeseen events (Figure 1), following the lines of CYC [6] and Clasitex [9].

Ontologies. The first author worked in the CYC Project [13], which tried to con-
struct the common knowledge tree in order to solve big problems in Artificial Intell i-
gence. CYC shows that it is possible to form taxonomies of specialized knowledge
areas (which is what we intend to do here, see Table 1), in addition to classifying the
common knowledge (goal that, due to its extension –between one and ten milli on
concepts– was not achieved by that project). Trees of specialized knowledge, where
the tree takes the form of a data dictionary, were used by the first author [7-9].

Similar scenarios. [11, 12] describe a scenario similar to the one we propose, but
with single-threaded code and a common ontology, outlining how a set of autono-
mous agents cooperate to coherent management of information in environments
where there are diverse information sources.

Our current and previous related work. This paper is based on our theses [1] and
[15]. [10] describes earlier work. [7] uses a common ontology to map (manually) the
data dictionaries of an otherwise strange data base, thus making its tables, fields and
values understandable to the casual user. Written in db manager Progress. [9] relates
words to concepts; it finds the main topics in an article written in Spanish. It does not
work on key words, but on concepts. It uses a concept tree. For this reason, it can find
an article talking about shoes, even if the article does not contain such word, but it
contains instead boot, moccasin, sandals..., even if these words may refer to other
contexts or concepts: moccasin is also a tribe of American Indians... [3, 4] extend [9]
by using weights for selecting concepts.

2.1 Status

A theory has not been developed, except a simple one for unforeseen events. A model
and a working environment have been developed. An imperative language, LIA, and
its programming environment has been constructed (in C and Java, for a PC), and
used for simple examples. We wrote a compiler from LIA to p-code, which is then
interpreted. This provides for easy change of LIA syntax and semantics. Once LIA is
frozen, we will probably build a compiler from it to Java. Now, the environment
assumes that all agents work inside the same computer; later, the agents should be set
free to run on different nodes of the Web. For this, we plan to make it FIPA-
complaint. MEI, the Machine of Unexpected Events, which contains a simple micro
planner (Section 5.1), as well as COM, the Ontology Comparator, are working. There
is a parallel planner [15]. COM now works with fixed relations (verbs); we will relax
this later, through the use of nodes in the ontologies representing the relations. We
propose work on automatic handling and recovery of e-errors in e-commerce, based
on MEI. Applications in LIA are scanty, due to its youth.

3 Model for Agent Interaction in Our Work

This is an overview; the next sections provide more detail.

3.1 Agents Are Multi-Threaded, Have Resources and Purposes

Scripts (renting_a_house, at_vacation, at_an_auction) describe the
intercourse between several roles (cooker, student, owner...), following
R. Schank and Marvin Minsky [14]. Each role can be instantiated later by an agent.
Each role is a program (a thread) in LIA, having requirements (prerequisites for its

instantiator agent), resources consumed, purposes achieved and resources produced at
the end of the interaction. Scripts are not active, they do not run until it s roles are
instantiated by agents. A role interacts (exchanges information) with another role via
LIA commands accept and out [15].

Agents are autonomous, proactive units (individuals; software packages) that ini-
tially possess several threads (for instance, how_to_swim,
how_to_be_honest), purposes (Ex: to sell these apricots, to buy a piano...)1 and
resources (apricots, $10,000, a VW car, knows how to cook...). Each agent decides
which of its threads to activate, in view of purposes and resources. Often, to achieve a
purpose, it must engage in interactions via scripts with other agents. It does so by
voluntarily acquiring (obeying, following, instantiating) some role in some script
(those that best match2 its abiliti es and resource limitations). An agent may engage in
several scripts simultaneously.

An agent may replan its purposes in view of achievements, closeness to purposes,
and resource status.3 A fortuitous event (Section 5) may alter the plan of the agent and
reaction threads may be used to deal with it. This forces them to micro planning, and
macro planning [15].4

3.2 There Is an Environment, and a Language for Enacting these Agents

The environment provides: (a) an editor in which to write LIA threads, define agents
and scripts; (b) a P-compiler for LIA; (c) an execution machine, that executes the P-
code; (d) MEI; (e) the ontology comparator; (f) global and regional variables for the
agents; (g) a matcher of agent purposes to resources produced by each role of a
script2; (h) a (macro) planner.3, 4 The LIA world contains resources, global variables
(time, temperature...), regional variables,5 agents, scripts, and unexpected events.
Agents and scripts are constructed using LIA [15].

Differentiating features of our work: (a) it handles unforeseen events; (b) agents
can communicate even if they use different knowledge organizations/structures.

3.3 They Communicate Using Each One its Own Ontology

Unless agents are written by the same person, they can not be sure that they exchange
words that are universally understood by everybody.6 Thus, they have to exchange

1 A purpose is a proposition that, when it becomes True, it is considered fulfill ed.
2 This matching is not described here, but it also uses COM and the planner.
3 At the moment, this replanning is “automatic,” instead of being agent-requested.
4 Planning occurs not only because unforeseen happenings, but also due to resource depletion,

failure or forfeit in a given interaction (the buyer ran away; I could not sell my car).
5 Regional variables are used (“seen”) only by agents and roles which declare them.
6 There are some words or symbols that are unambiguous (map to a unique meaning or con-

cept): 7, π, London, Ludwig van Beethoven, Fourier Transform... Most words (mole, star...)
are ambiguous. A concept is usually represented by more than one word: the concept that I

ambiguous words or descriptions of what they want or mean. Since we want our
agents to communicate with your, his and her agents, we do not assume that all agents
use the same interpretation for a natural language word, or that they share the same
concepts or the same concept organization. Instead, agents have to face the problem
of how to make sure that what I hear is what you mean; i. e., to be reasonably sure
that my mapping of your words to my concept is probably what you had in mind. If in
doubt, our agents ask clarifying questions or queries to the other agent, until an ac-
ceptable meaning (concept) is transmitted.

Table 1. Two similar but not identical ontologies or trees of concepts. Concepts appear in
bold: Grain, meaning a seed of a plant used for eating. Words appear in italics: grain, which
may mean Grain (seed of plant), Small particle (bit, pellet, grain, speck, fragment), or Tex-
ture (texture, grain, nap, striation).

Ontology of Agent A Ontology of Agent B
Fruit fruit, fruits Seed seed, grain

Grain grain, seed, seeds Sorghum sorghum
Bean bean, frijol Oat oats, oat, grits

Soya bean soya bean Bean bean, kidney bean
Black bean black beans Black bean black bean, frijol

negro
Cereal cereal Soya bean soya bean, soybean

Wheat trigo, wheat Corn maize, maiz, maíz
Corn corn Wheat trigo
Sorghum sorghum Peanut peanut, maní, cacahuate

Citric citric, citrics Fruit fruit
Orange naranja, orange Tangerine tangerine
Lemon lemon, limón, Lemon lemon

Apricot apricot Avocado avocado
Pineapple piña, pineapple Pineapple pineapple
Avocado avocado, avocados Orange orange

Prune prune

4 Communication between Agents that use Different Ontologies

This section presents our approach (others exist) on how agents using different dia-
lects or concept hierarchies (trees of concepts) communicate meaningfully.

Matching words arising from concepts in different ontologies. We describe here
COM which, when two agents interact, has to map words to concepts. When an agent

have in my mind of a certain cereal, written maiz in Spanish, is also mapped into by words
such as elote, pozol (Spanish), maize, corn (English),...

(A, say) utters a word (corn, in “ I want to sell corn”) to B (the listening agent), sev-
eral cases arise:
(1) B knows word corn (not the example in Table 1) and maps into the same concept

which has the same father in B. Thus, corn in A maps to Corn son of Seed; in B
also into Corn son of Seed. We can say that A has transmitted Corn through
corn to B.

(2) B has no knowledge of word corn (Refer to Table 1). In this case, B guesses and
asks A (all this intercourse is done by COM, automatically, without explicit calls
from A or B, so that –if COM is successful– they appear to be transmitting con-
cepts among themselves, when in fact they are exchanging words): “ Is it a kind
of a fruit?” . A answers with Cereal, the father of Corn, and transmits “ it is a ce-
real” , which makes a recursive call to COM. In our example, word cereal is also
not understood by B. Then A tries Grain, the father of Cereal, and transmits “ it
is a grain or seed or seeds” . B has these words and thus knows that A is talking
about Seed. [We went up in the ontology trees, looking for some common con-
cept. If one or two steps upwards do not produce a match, perhaps their ontolo-
gies are incomparable, and further communication is impossible.] Now, we want
to go down; A must convey Corn to B, not just Grain. Thus A sends B all the
sons and grandsons of Grain, together with their properties: (bean size 1cm, skin
smooth...), (trigo size 1mm, skin smooth, shape elli ptical...)..., which B must
match against the sons and grandsons of its Seed. This matching is a recursive
call to COM, since what is skin for one is peel or epidermis for the other, what is
pale orange for A is just orange for B, and one expresses sizes in centimeters,
but the other in inches... 7

(3) B knows corn as Corn but its father is Seed, while in A, the father of Corn is
Cereal, and the father of Cereal is indeed Seed (not the example in Table 1),
thus:
A: Seed – Cereal – Corn B: Seed – Corn

In this case, a match is obtained, although Corn has in A a grandfather that
matches just the father (not the grandfather) of Corn in B.

(4) when corn arrives to B, it may have many possible matches. (Think of you
wanting to buy a screwdriver, and talking to a hardware store clerk that sells 25
classes of screwdrivers). A: Screwdr iver screwdriver B: Screwdr iver –
Phillips screwdr iver, Flat screwdr iver, Z-shaped screwdr iver...

In this case, a match has been found by COM, and further disambiguation is not
possible by using the ontology tree of A (its Screwdr iver has no leaf nodes), but
by resorting to use, price... intended [“For what do you want the screwdriver?”
“How large?”. This extension is beyond current COM].

(5) More cases exist [15], but the reader gets the idea.
How big can a given tree of concepts be? CYC [13] assumes that there are between

one and ten milli on common concepts (common sense concepts, that everybody
shares). From this tree, an agent is interested only in a few hundred: seeds and their

7 The concepts in an ontology have properties (attributes) and values, not shown in Table 1.

properties, say. A common tree for concept disambiguation is not needed, but it may
help.

5 Handling Unexpected Events

Autonomous agents, as well as human beings, must face the fact that the world is
unpredictable, due to incomplete information, uncertain environment, unknown proc-
esses, acts of other agents, or just Murphy’s Law. An unexpected event, when sensed
by an agent, modifies its participation in scripts, forcing it to execute contingency or
emergency roles (called reaction threads), to postpone or cancel some current scripts
in which it is engaged, and later, to do replanning.3 Non perceived events are ignored,
although that may lead to catastrophe.

 Unexpected events are handled by MEI, a machine placed outside the interaction
environment, which (1) produces unexpected events at random times; (2) locates each
agent capable of perceiving an event,8 when it occurs; (3) for each of these agents,
MEI interrupts its threads, (4) selects and starts some reaction thread in response to
the event; (5) activates some of the interrupted threads; (6) detects the end of the
event; (7) activates some more of the interrupted threads, and (8) stops (usually) the
reaction thread. In this manner our agents react to unexpected events. We will l ater
incorporate into each agent calls to functions (2) to (8), to make them more autono-
mous.

5.1 How to React to an Infinite Number of Unexpected Events

There is an infinite number of fortuitous events, but an agent can only have a small
number of predefined reaction threads: it can know how to react to “winning the
lottery” (reaction depends if it has no savings, owns its home...), but not how to react
to “ finding some money” . How can it survive? With the help of the tree of unex-
pected events. This tree (Fig. 1) is infinite in principle, and each node contains an
event and the names of the possible reaction threads for that event; see also Fig. 2.
More general events appear near the root. The branches denote the relation “subset” .
Reaction threads often have preconditions for they to be useful: “must have um-
brella”, “must have raincoat” , “must be near a shade”... are some preconditions for
certain reaction threads for event “ rain” .

When one of the infinite number of unexpected events occurs, a perceiving agent
uses the tree of unexpected events to select, from the reaction threads it owns, the
most specific one pertaining to the event. In this manner (4) above gets executed.

Every agent owns at least one reaction thread: the most general one.

8 An agent perceives (detects its beginning and end times, as well as its other features: inten-

sity...) an event if it has a reaction behavior for that event or for an specialization of it.

To know which of the normal threads stopped in (3) are continued in (5), in spite
of the unexpected event, the agent uses an incompatibility algorithm (not described
here) to detect which threads can not run simultaneously with the reaction thread (4).

The reaction thread started in (4) is ended (8) when its purpose has been achieved,
usually because the unexpected event stops. At this moment, the incompatibility algo-
rithm restarts (7) some more of the threads that were not restarted in (5), due to in-
compatibility with the unexpected event. Finally, some of the threads stopped in (3)
are never restarted, due to lack of resources. Replanning4 (not discussed here) may be
needed. Execution of (2) to (8) is called microplanning. [15] shows applications.

unexpected_event: still; astonished.
 natural_event: cry; run.
 rain: open_umbrella; wear_raincoat; run; get_wet.
 earthquake: faint; freeze; help_people; hide.
 fire: call_fireman; run; tell_others.

 ...
 life_threatening_event: cry; pray.
 assault: cry; call_police; call_family.
 accident: call_ambulance; call_police; get_scared.
 sickness: call_doctor; tell_others.
 sick_pilot: replace_pilot.

 ...
 lucky_event: be_happy.
 won_lottery: save_money; buy_house; buy_car.
 bumped_into_old_friend: go_to_the_restaurant; greetings.

 ...
 offers_event: accept_proposal; be_happy.
 offer_job: begin_work.
 offer_gift: accept_gift.

 ...
 lack_event: ask_help, stay_suspended.
 things_lack: replace_for_newOne.
 airplane_lack: cancel_fligh; delay_flight.
 money_lack: request_to_the_Bank.
 defect: repair_defect.
 fail_airplane: move_passengers.
 product_defect: replace_for_newOne.

...
... (many_other_events):...

Fig. 1. Tree of unexpected events. In bold are the events; in Courier font are the possi-
ble reaction threads to that event. Every agent is born with a finite number of reaction threads.
The tree may be infinite, since it contains all possible reaction threads.

Role open_umbrella()

{ requisite { umbrella ; }local { int x ; }

print(" Open the umbrella"); //no further

atomic a

ctions

Fig 2. Reaction thread, written in LIA. This role sits in some agents, those that are able to
perceive rain and know that one way to react to rain is open_umbrella. An agent may have
other reaction threads for rain, for instance run, wear_raincoat. These are the reactions
known to the agent for unexpected event rain. Which one to execute depends on the resources
available to the agent at the time of the rain.

6 Conclusions and acknowledgements

Communication of concepts among unfamili ar agents must be through symbols or
words of a natural language. The receiving agent must map the symbols or words it
receives, into the right concept in its own ontology; hence, the paper gives a useful
solution to the problem of mapping a concept in one ontology to the closest concept
in another.

Unforeseen events are handled using the background of Interaction Machines.
Acknowledgements. We are grateful to IPN authorities for their wisdom in found-

ing (1997) CIC and its Agents Laboratory. We thank Prof. Michael N. Huhns and his
group at University of South Carolina for advice and help during fruitful conversa-
tions. Work was partially supported by grants Conacyt-28026, NSF-Conacyt-32973,
and CGEPI-980744. The second author acknowledges CONACYT and IPN-COFAA
research assistantships.

References

(•) In Spanish. Authors’ papers can be read and copied, freely, full text, from CIC’s
Digital Library, through http: //www.cic.ipn.mx/~aguzman

1. Dominguez, C.: Handling Infinite Unexpected Events in Agents Interactions. M. Sc. thesis
in Computer Science, CIC-IPN Mexico City (2002) •

2. Finnin, T.; Weber, J.; Widerhold, G., et al. Specification of the KQML Agent Communica-
tion Language (draft). The DARPA Knowledge Sharing Initiative External Interfaces
Working Group (1993)

3. Gelbukh, A, Sidorov, G., and Guzman, A.: A Method Describing Document Contents
through Topic Selection. Lecture notes in Workshop on String Processing and Information
Retrieval, (IEEE Computer Society, Los Alamitos, CA) Cancun, Mexico (1999) 73-80

4. Gelbukh, A, Sidorov, G., and Guzman, A.: Document Comparison with a Weighted Topic
Hierarchy. DEXA-99. Lecture Notes in 10-th International Conference on Database and

Expert System Applications, Workshop on Document Analysis and Understanding for
Document Databases, (IEEE Computer Society, Los Alamitos, CA) Florence, Italy (1999)
566-570

5. Gray, Robert S.: Agent Tcl. In Dr. Dobb's Journal, March (1997)
6. Guha, R.V. and Lenat, D.: Enabling Agents to Work Together CACM, No. 37 (1994) 7
7. Guzman, A.: Project “Access to Unfamili ar Data Bases.” Final Report, IDASA, Mexico

City. (1994) •
8. Guzman, A.: ANASIN, Intelli gent Analyser and Synthesiser of Information. Technical

Report: User Manual. IDASA. Mexico City (1994b) •
9. Guzman, A.: Finding the Main Themes in a Spanish Document. Journal Expert Systems

with Applications, Vol. 14, No. 1, 2, (1998) 139-148
10. Guzman, A., Olivares, J., Demetrio, A., and Dominguez, C.: Interaction of Purposeful

Agents that Use Different Ontologies. In: Osvaldo Cairo, Enrique Sucar, Francisco J. Cantu
(eds.): Lecture Notes in Artificial Intelli gence 1793, MICAI 2000: Advances in A. I.
Springer Verlag, Heidelberg (2000) 557-573.

11. Huhns, M. N.; Singh, M. P. and Ksiezyk T.: Global Information Management Via Local
Autonomous Agents. In: M. N. Huhns, Munindar P. Singh, (eds.): Readings in Agents,
Morgan Kauffmann Publishers, Inc. San Francisco, CA (1997)

12. Huhns, M. and Singh, M.: Managing Heterogeneous Transaction Workflows with Cooper-
ating Agents. In: Nicholas R. Jennings and Michael J. Wooldridge, (eds.): Agent Technol-
ogy: Foundations, Applications and Markets, Springer-Verlag, Heidelberg (1998) 219-240

13. Lenat, D. and Guha, R.: Building Large Knowledge-Based Systems. Reading, MA:
Addison Wesley., Reading, MA. (1989)

14. Minsky, Marvin: The Society of Mind. Simon & Schuster Inc. (1985)
15. Olivares, Jesus: An Interaction Model between Purposeful Agents with E-Commerce

Examples. In Ph. D. Thesis. Defended in November 2001. CIC-IPN, Mexico City. (2002) •
16. Wegner, Peter: In Tutorial Notes: Models and Paradigms of Interaction, Department of

Computer Science, Brown University, USA, September (1995)

